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A P P L I C A T I O N  OF A G R A D I E N T  A P P R O A C H  

TO E S T I M A T I O N  OF T H E  L O C A L  S T R E N G T H  

S. V. Suknev UDC 539.4 

Some problems associated with the use of the gradient approach for estimating the local strength 
are considered. It is shown that a physically unjustified choice of the gradient function in the 
strength criterion can lead to contradictory results. 

The gradient criteria of the ult imate state have recently been developed intensively [1-6]. Both the 
general approaches and the particular local strength and yield criteria have been elaborated. As a whole, 
the gradient criteria describe well the occurrence of an ultimate state in local regions, in particular, in stress- 
concentration zones. However, in some cases, their use give rise to contradictory results. Here we show that the 
correct application of the gradient approach to estimation of the local strength allows one to obtain physically 
correct expressions for the ult imate stresses and dimensions of the defects. 

The traditional approach to strength calculations is to compare the internal stresses which occur in a 
deformable body with their limiting values. The strength condition has the form 

(1) 
where cre= f(o'ij) and a0 = const. The equivalent stress cr~ characterizes the internal intense stress state 
of the body and is a function of the stress-tensor components ~ij in the general case. The ultimate stress 
or0 characterizes the average mechanical properties of the body's field and it is assumed to be a constant of 
the material. Since a0 is determined for the uniform stress state, the range of application of the traditional 
approach is restricted to the cases where the dimension of the stress-uniformity zone is quite large to consider 
that cr0 = const. Therefore, the gradient approach is used to estimate the local strength. In contrast to the 
traditional approach, the essence of the gradient approach is to assign the mechanical properties to a certain 
deformable region of finite dimensions rather than to the material as such, which is more appropriate for the 
concept of mechanical strength. This means that the ultimate stress is not a constant of the material and 
depends on the dimensions of the stress-uniformity zone. 

The characteristic dimension of the deformable region is denoted by Le; if it is quite large compared to 
the dimensions of the structural components of the material, including the admissible defects of the structure, 
i.e., the conditions of averaging of the mechanical properties are satisfied, the value of the local strength differs 
little from a0. On the contrary, if Le is comparable with the dimensions of the structural units, their influence 
on the local strength becomes noticeable. This influence is the stronger, the smaller the dimension Le relative 
to the characteristic dimension of the structure of the material L0. Thus, the local strength of the material 
should depend not only on the characteristic dimension of the deformable region Le but also on the ratio 
Lo/Le. With allowance for this, we write the local-strength condition 

cr~ <. f(~o, LolLs). (2) 

It is hardly possible to find a universal form of the function f(a0, Lo/Le); however, one can formulate 
additional conditions which reflect the specifics of the problem in each particular case and to which this 
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function should correspond. The form of f(a0,  Lo/Le) is determined with account of these conditions. Let us 
formulate the requirements for f(0-0, Lo/Le) for the problem of stress concentration: 

- -  Taking into account the stress gradients (the gradient hypothesis) 

f(0-o,LolL~) = a0[1 + f*(0-ij,aij,k)], 

- -  Link to the traditional criteria 

f* (aii, aij,k) = inv; (3) 

f(0-o, 0) = 0-0; (4) 

- -  Limitedness of the critical stresses 

f (ao,  Lo /L~) /Kt  ~ const, Kt -'-* ~ .  (5) 

Here f*(aij ,  0-ij,k) is a dimensionless function of the components of the stress tensor and the stress-gradient 
tensor which is invariant under coordinate transformations and Kt is the stress-concentration coefficient. 

The requirement (3) is due to the fact that in the stress-concentration conditions the characteristic 
dimension of the deformable region is determined by the dimensions of the stress-uniformity zones, rather 
than the dimension of the whole body. This dimension depends on the character of the stress distribution 
and, hence, their gradients. The gradient hypothesis was formulated by Serensen [7] [in a form different 
from (3)] and was used by Strelyaev, Afanas'ev, et al. to describe the experimental brittle static and fatigue 
strength data of the specimens with geometrical stress concentrators (orifices, notches, and hollow chamfers). 
In accordance with the gradient hypothesis, the onset of the ultimate state is determined by the values of the 
stresses themselves and their gradients at a given point. The use of the gradient hypothesis is a key factor in 
the development of gradient strength criteria [3, 4]; however, this has meaning only if the stress gradients do 
not vanish at dangerous points (for example, by virtue of symmetry of the problem). 

The requirement (4) ensures the transition of the gradient (2) to the traditional (1) criterion in the 
case of a uniform stress state. 

The requirement (5) reflects the known experimental fact: irrespective of the degree of acuteness of 
a notch and the value of the theoretical stress-concentration coefficient, the body fails under a finite load 
[8]. For acute concentrators, its value depends only on the length of a cut. The requirement (5) ensures as a 
matter of fact the relation between the gradient criterion (2) and linear fracture mechanics. 

With allowance for the requirements (3)-(5), we propose the following gradient criterion of the ultimate 
state [1, 2]: 

0-e < o"o(1 + Lo~'~'~); (6) 

L~ = a~/Igrad 0-~1. (7) 

The characteristic dimension of the deformable region determined by expression (7) is shown in Fig. 1. 
Curve 1 characterizes the equivalent-stress distribution over the dangerous cut, the straight line 2 is tangent 
to curve 1 at the point of stress concentration (0-e = 0-max), and the dashed straight line is the asymptote. 
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The criterion (6) describes quite precisely the experimental data on the onset of a local plastic flow in 
the stress-concentration region, which were obtained for some metal materials on flat specimens with orifices 
and notches of various forms [5]. 

Legan [3] suggested another method of estimating the local strength. In addition to the function of the 
criterion (6) 

f((ro, Lo/Le) = (r0(1 + L 0 ~ e ) ,  (8) 

the function 

f((ro, Lo/Le) = (r0X/1 + Lo/Le (9) 

and some combinations of (8) and (9) satisfy the requirements (3)-(5). In view of this, we consider the gradient 
criterion 

(re ~< (r0(1 - ~ + ~/~2 + Lo/Le), (10) 

where ~3 is a dimensionless parameter. The characteristic dimension Le is estimated by (7), and the greatest 
normal stress is regarded as an equivalent dimension. 

The introduction of an additional parameter makes the gradient criterion more flexible and allows one 
to describe the experimental data more accurately, using • as the approximation parameter. However, not 
only the function (8) and (9) but many others meet the requirements (3)-(5). The choice of the function 
f((r0, Lo/Le) should be physically justified. The formal complication of the gradient function does not allow 
one to explain the physical meaning of the newly introduced parameters and leads to absurd results in some 
cases. 

Just as in fracture mechanics, in the framework of the gradient approach one can pose the problem of 
estimation of the admitted dimensions of defects and determination of their critical values. However, there 
are no restrictions connected with the type of defect; the latter can have any geometrical form, not precisely 
a crack-like shape. The admitted dimensions of the defects are determined from the condition 

(re >t a0, (11) 

where (re is the critical value of the applied stress at which the ultimate state is reached at the most stressed 
point of the body. Condition (11) means that the presence of defects that are not the stress concentrators 
does not result in a decrease in the ultimate stress compared to the strength (r0 of a "defectless" material. 
According to the gradient approach, the critical stress is estimated as follows: 

(re = f(o'o, Lo/L,)/Kt. (12) 

Using the gradient criterion (10), with allowance for (11) and (12), we obtain an estimate of the critical 
dimension of the defect in the form of an open elliptic orifice in a plate [3]: 

K t - 1  ( 1 +  1 ) 
zo = l0 K ; u  1 , (13) 

where l0 = 2K2c/(Tro'~) is the critical dimension of the defect in the form of a longitudinal crack and Ke is the 
critical coefficient of stress intensity. It is easy to show that the dependence le (13) contradicts the common 
meaning. For/~/> 0.25, the critical dimension of the defect decreases as the acuteness of the notch decreases, 
vanishing for Kt = 1, i.e., the less acute concentrators become more dangerous owing to the decrease in the 
critical dimension. In the range 0 < /~ < 0.25, the value of lc changes nonmonotonically, the dependence Ir 
acquires the physical meaning only for/3 = 0, and precisely this case corresponds to the use of the criterion 
(6). Thus, although the introduction of fl into the gradient criterion by the method proposed in [3] makes 
it more flexible from the viewpoint of the description of experimental local strength data, it is physically 
unjustified. 
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To el iminate this contradict ion,  we present lc in the form 

lc = lo(l + i~,) ,  fl >~ O, (14) 

where ;5 is a numerical parameter .  The  physically consistent values of /3  lie in the domain /3 /> 0. It is 
noteworthy tha t ,  because the dimension Le is characteristic, it can be es t imated by various methods,  not 
only by means  of expressions (7); therefore, the satisfaction of the requirement (3) is not, strictly speaking, 
obligatory. In solving an elastoplastic problem with the use of the  gradient yield condition [5], it is convenient 
to use the inverse value relative to the  stress to determine Le [5]. However, there is no need in it to estimate the 
local s t rength  of a linearly elastic body, the more so since the determination of the relative stress gradient is 
labor-consuming. It is known [9, 10] tha t  the local stress distr ibution depends on the  radius of curvature of the 
concentrator  to a larger extent  than  on other geometrical parameters;  therefore, in the first approximation, 
one can use the  radius of curvature  of the concentrator  p at a dangerous point to estimate Le. Here the 
restrictions connected with the  use of the gradient hypothesis  are eliminated, because it is not necessary to 
calculate the  stress gradients. For es t imat ion of L0, the critical dimension of the defect lc is used. We present 
the function f(cr0, Lo/L,)  in the  form 

f(ao, Lo/L~) = crof(l,/p). (15) 

Bearing in mind  that  the stress-concentration coefficient is an increasing function of I/p (I is the dimension 
of the concentrator)  

If, = ft(I/p), (16) 

it is easy to see that  it suffices to use the function ft as f(Ic/p) to satisfy the requirements (4) and (5): 

f(Ic/p) - f t ( ldp) .  (17) 

Thus, with allowance for (15) and (17), the local s t rength criterion takes the form 

.<  0f (lc/p). (18) 

Therefore, the  ult imate stress is determined by the expression a ,  = aof,(lc/p)/ft(I/p), and the ratio 
f t (I /p)/ f , ( lc/p)  can be regarded as an effective stress-concentration coefficient. 

For numerous  impor tant  applied problems, the stress-concentration coefficient can be approximated 
(or exactly presented) in the form [11] 

K , = I + ~  a ~ ,  (19) 

where a is a numerical coefficient which depends on the geometry of the body and a = I/2. For these problems, 
the local-strength criterion (18) is t ransformed to the form (6) for L0 = 0~21c/2. However, if the requirements 
imposed on the  accuracy of de terminat ion  of the u l t imate  stress do not admit  this, the gradient function 
should be determined according to (15) and (17). 

We consider some examples.  Let us begin with the uniaxial tension of an infinite plane with an 
elliptic orifice. The  problem was solved by Kolosov [12] and Inglis [13]. The stress-concentration coefficient 

is de termined by expression (19) with a = 2. The  critical stress has the form ac = a0(1 + ~ ) / I Q ,  
where lc is determined according to (14). The parameter  15 is found experimentally, but it is necessary to 
set /~ equal to zero if the necessary experimental  da ta  are absent.  In this case, the lower estimates of the 
critical dimension of the concentra tor  and the ul t imate  stress, which are assigned to the strength limit, are 
obtained. The  parameter /3  can also be determined by a different way if one uses expression (7) to est imate 
the characteristic dimension Le. In this example, the resulting value of/3 is equal to 0.5 (if the greatest normal 
stress is used as the equivalent stress) or 0.4 (if the stress intensi ty is used) [6]. However, the validity of these 
estimates can be supported only experimentally. 

For a plate of finite dimensions with a central elliptic orifice, the stress-concentration coefficient can 
also be presented in the form (19). Here the coefficient cx depends on the dimensions of the plate and is found 
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by known approximate formulas [11]. In this case, the ultimate stress has the form 

oc = o0(1 + (20) 

Here lc is determined by expression (14), but the quantity l0 entering into it should be corrected with allowance 
for the finite dimensions of the plate: 10 = (2K2/(~rO'2o))(1/F2), where F is a correction function which takes 
into account the effect of the dimensions of the body on the stress-intensity coefficient [14]. 

Expressions (19) and (20) are applicable also to concentrators of nonelliptic form, for which one can 
introduce the notion of an "equivalent elliptic orifice" or "equivalent elliptic notch" [11]. The latter concerns 
both flat and cylindrical specimens with a surface circular notch, including a V-shaped notch with a small 
opening angle. Nisitani and Nogushi [15] reported the experimental data concerning the determination of the 
fracture stress ac upon tension of cylindrical specimens having a circular notch. The specimens were fabricated 
from $45C high-strength steel. The notch was V-shaped with opening angle r = 60 ~ and radius of curving 
p at the top. Specimens with notch depth a = 0.2 mm were tested by varying p within 0.056-2.1 ram. The 
minimum diameter of the transverse cross section was constant and equal to 4.5 ram. 

Figure 2 shows the values of ac calculated by formula (20), depending on the stress-concentration 
coefficient for fl = 0 and fl = 1 (curves 1 and 2). Curve 1 limits from below the domain of a~, and curve 2 
approximates the experimental data represented by the dots. As Kt --* ~ ,  the calculated curves approach 
asymptotically the value found in accordance with the linear approach of fracture mechanics (dashed straight 
line). The dashed curve is calculated according to the traditional approach. The experimental data demonstrate 
convincingly the advantage of the gradient approach over the standard approach. 

Now we consider the uniaxial tension of a unbounded body weakened by an internal cavity, which is 
the ellipsoid of revolution about the axis of loading. As Kt ---* or the ellipsoid becomes a round crack of 
radius a. The stress-concentration coefficient is connected with a and p by the following relation [9]: 

Kt = 1 - u - (1.5 - v)a/p + 2(alp) 2 + (u - (1.5 + u)a/p)ac/p  (21) 
1 - ~, + ~le  + (alp - 2 -4- 2u)ac/p - (1 -4- u)(ac/p) 2 

Here 

arctan ~ r~ - f i - - r -  1 ln(1 -4- r  for a l P <  1, c =  for a / p > l ,  c =  
~ / a / p -  1 r  alp 

and u is the Poisson ratio. If p = a, we have 

Kt - 3(9 - 5u) 
2(7 - 5u)" (22) 

This problem is of primary interest for evaluating the danger of internal defects. According to the gradient 
approach, the critical dimension of the defect is determined by expression (14), and the gradient function in 
the local strength criterion by expressions (15) and (17) with allowance for (16), (21), and (22). The quantity 
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I0, which enters into (14), is the critical dimension of a defect shaped like a round crack: 10 = rKc2/(2a02). 
The use of the gradient function (8) in this case can lead to a great error in the determination of the critical 
dimension of the defect. For example, Nordgren and Melander [16] found the critical dimensions of defects 
shaped like spherical pores for a WC-10% Co material. The experiments showed that the resulting values 
differ slightly from the values calculated for a round crack within the framework of the approach of linear 
fracture mechanics. This means that the coefficient/3 in expression (14) is zero for the given material, i.e., 
irrespective of the shape, the defects available in the material do not exert an effect on the strength of the 
material up to the definite (critical) dimension. The use of the functions (8) in the local strength criterion 
results, in this case, in an estimate of the critical dimension of the defect that is overestimated by 62% [6]. 

Thus, the correct application of the gradient approach to estimation of the local strength allows one 
to obtain physically correct expressions for the ultimate stresses and dimensions of defects that describe well 
the known experimental data. 
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